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Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energı́a Atómica,
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Abstract
We study some aspects of recent proposals to use the noncommutative Chern–
Simons theory as an effective description of some planar condensed matter
models in strong magnetic fields, such as the quantum Hall effect. We present
an alternative justification for such a description, which may be extended to
other planar systems where a uniform magnetic field is present.

PACS numbers: 11.10.Nx, 11.10.−z

1. Introduction

Noncommutative field theories have recently attracted renewed attention, mostly because of
their relevance in the understanding of some phenomena in the context of string theory, such
as the low-energy limit of open strings in the presence of some special background field
configurations [1, 2].

In the condensed matter physics context, noncommutative Chern–Simons (NCCS)
theories have recently been proposed as effective descriptions of the Laughlin states in the
quantum Hall effect [3–6]. Noncommutative field theories have also been used to describe the
skyrmionic excitations of the quantum Hall ferromagnet at ν = 1 [7, 8].

The physics of a bidimensional system of particles in the presence of an external magnetic
field has a very rich structure, a phenomenon which is partly due to the particularities of the
Landau level spectrum for a particle in an external field. In particular, it is a well-known
fact that when the system is restricted to the lowest Landau level (LLL), area preserving
diffeomorphisms become a symmetry of the system [9–11]. The restriction to the LLL is
usually invoked as a consequence of the existence of a large gap between the lowest and
higher Landau levels [12]. However, this restriction cannot be defined as a smooth limit
of the full (all level) system, since there is a change in the number of physical degrees of
freedom, an effect that has been known since the early studies on Chern–Simons quantum
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mechanics [13], and entirely analogous to a similar reduction from the Maxwell–Chern–
Simons theory to the pure Chern–Simons one [9, 13]. The change in the number of degrees of
freedom means that one of the physical variables (a coordinate for the particle) is transformed
into the canonical momenta of the remaining variable. Thus the usual invariance under
canonical transformations acquires a much greater relevance, since it becomes a spacetime
symmetry. As canonical transformations preserve the phase space volume, the symmetry
of the reduced system can be analogously thought of as invariance under area preserving
diffeomorphisms.

The quantum version of these symmetry transformations necessarily has to cope with
operator ordering problems, since they involve canonical conjugate variables that do not
commute in the quantum theory. In the operatorial (canonical) quantization method, the use of
the Weyl quantization prescription is a natural way to introduce the Moyal product for phase
space functions [1]. Of course, the same phenomenon can be studied in the path integral
framework, for example by means of the mid-point prescription [14] to define the matrix
elements of Weyl-ordered products, when they appear inside the path integral.

In this work we consider systems described by an action with the general structure:

S = Sm + Sg + Sint (1)

where Sm denotes the free action for a system of particles (either in its first or second quantized
representations), Sg is the action for a vector (gauge) field Aµ and Sint corresponds to the
coupling between the particles and the gauge field. A distinctive feature of the systems
we will analyse is that the free action Sm will be negligible for the dynamics, due to the
presence of a strong external magnetic field (defined as part of Sint). This is usually stated
as the ‘freezing’ of the kinetic energy, and it is a fundamental requisite for the emergence of
a noncommutative description. We shall argue that the noncommutativity is, for the kinds
of systems we are considering, a property of the description used rather than a fundamental
symmetry. For the noncommutative theory corresponding to a system in the presence of an
external magnetic field there is, as we shall see, also a freedom in the choice of the deformation
parameter. A variation in this parameter may be compensated by the introduction of a constant
noncommutative magnetic field. The usefulness of the noncommutative description is that it
might simplify the treatment of problems that are difficult to deal with in the usual commutative
setting.

The organization of this paper is as follows. In section 2 we review some properties of
a planar system of particles coupled to a strong magnetic field. In particular, we discuss the
emergence of area preserving diffeomorphisms as symmetry transformations, and the necessity
of the introduction of a noncommutative geometry if a consistent representation of the algebra
of classical symmetries is required. Moreover, we discuss how the quantum version of those
symmetries implies the noncommutativity of the gauge transformations. Although the results
presented in this section are generally known, the derivations contain novel points of view and
techniques, in particular in section 2.2.

In section 3, the noncommutative description is introduced as a tool to change the part
of the gauge field dynamics compatible with those symmetries. Finally, we argue that a
noncommutative theory may be used as an effective description of the quantum Hall effect,
alternative to the usual CS commutative approach.

Some technical aspects of the path integral version of the Moyal product, which are
recalled in the main part of the paper, are presented in appendix A. Also, the apparently
different way of introducing the NCCS theory, based on the incompressible fluid picture, is
discussed in appendix B.
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2. Matter current coupled to an external field

In order to study the symmetries of the full system, as defined by S in equation (1), it is useful
to begin with the simpler case of a conserved matter current coupled only to an external gauge
field. The latter is assumed to correspond to a strong uniform magnetic field B, whose strength
is supposed to be large when compared with the interactions, in such a way that the dynamics
can be safely restricted to the lowest Landau level. This assumption will be crucial in all our
subsequent developments.

2.1. Symmetries in the lowest Landau level

In a first quantized description, the form of the interaction term, Sint, is

Sint =
∫

d3x Aµ(x)jµ(x) (2)

where Aµ denotes the gauge field corresponding to the purely external magnetic field. Later,
we shall also include a fluctuating part aµ, so that in (2) we will make the replacement
Aµ → Aµ + aµ. The most important part of the gauge field, determining the spectrum of the
theory, will be assumed to be Aµ, while aµ is, for the time being, assumed to be perturbative
in character.

To fix the ambiguity in the gauge field configuration corresponding to the constant
magnetic field B, we adopt the Weyl gauge (A0 = 0) and a symmetric gauge for Aj :

Aj( �x) = − 1
2Bεjkx

k. (3)

For a matter field current due to a system of N particles,

Sint = e

N∑
a=1

∫
dt Ak( �xa(t))

dxk
a(t)

dt
= b

2

∫
dt

N∑
a=1

ẋj
a(t)εjkx

k
a (t) (4)

where b ≡ eB, k, j = 1, 2 and t → �xa(t), a = 1, . . . , N defines the particles’ trajectories.
Taking into account the second-class constraints that follow from this (first-order) action,

the Poisson (Dirac) brackets are{
xj

a , xk
b

} = θδabε
jk θ = −b−1 (5)

while for arbitrary functions f, g of the coordinates, one has

{f, g} = θ

N∑
a=1

∂f

∂x
j
a

εjk ∂g

∂xk
a

. (6)

The theory is invariant under reparametrizations, hence the canonical Hamiltonian vanishes.
Besides, the system is then also invariant under ‘canonical’ transformations, namely,
transformations that leave the bracket (5) invariant. Their infinitesimal version is

δ�xi = η{xi,�(x)} (7)

where η is an infinitesimal constant, and �(x) is an arbitrary function of the coordinates
�xa . These transformations are symmetries of the classical action1. Alternatively, they can
be interpreted as the time independent gauge transformations that survive the A0 = 0 gauge
condition.

To understand the quantum realization of these symmetries, in the canonical quantization
approach, one imposes the fundamental commutator[

x̂j
a, x̂

k
b

] = ih̄θδabε
jk (8)

where we have written h̄ explicitly, in order to trace the quantum effects.
1 This is, of course, valid only if we ignore Sm.
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To the classical canonical transformations there correspond the quantum counterparts

x̂i → x̂i
U = Û

†
x̂i Û (9)

where Û is an arbitrary unitary operator. When the transformation defined by Û is connected
to the identity, the infinitesimal version of (9) is, of course,

x̂i → x̂i + δ�x̂i δ�x̂i = η[x̂i , �̂]. (10)

When representing the classical symmetry generator by a quantum operator, usually an operator
ordering problem arises. Within the Weyl ordering prescription [15], the noncommutativity in
the classical theory arises when the mapping between classical and quantum transformations
is defined.

Indeed, writing the Weyl-ordered operator O(f ) associated with a classical function f of
the coordinates in a ‘Fourier’ representation:

Ô(f ) =
∫ [

N∏
a=1

dpa
1 dpa

2

2πh̄

]
f̃ (p) exp

[
i

h̄

N∑
a=1

(
pa

1 x̂1
a + pa

2 x̂2
a

)]
(11)

where

f̃ (p) =
∫ [

N∏
a=1

dx1
a dx2

a

2πh̄

]
f (x) exp

[
− i

h̄

N∑
a=1

(
pa

1x1
a + pa

2x2
a

)]
(12)

is the Fourier transform of f (x). It can be easily verified that (11) is Weyl-ordered, and is a
one-to-one way of assigning an operator Ô(f ) to a classical function of the coordinates.

Bringing now the product of two Weyl-ordered operators back to Weyl order, the resulting
operator does not correspond to the usual product between functions, but rather to

Ô(f )Ô(g) = Ô(f 	 g) (13)

where 	 denotes the Moyal product:

f (x) 	 g(x) = exp

(
i

2
h̄θεjk ∂

∂ηj

∂

∂ξk

)
f (x + η)g(x + ξ)|η→0,ξ→0. (14)

For infinitesimal transformations, we have

Û (f ) = Î + ηT̂ � + O(η2) (15)

where

T̂ � =
∫ [

N∏
a=1

dpa
1 dpa

2

2πh̄

]
�̃(p) exp

[
i

h̄

N∑
a=1

(
pa

1 x̂1
a + pa

2 x̂2
a

)]
. (16)

Thus, for the composition of two infinitesimal transformations, the change in x̂j to the first
order in each of the respective infinitesimal parameters η1,2 shall be given by

δx̂j = η1η2
[
x̂j ,

[
T̂ �1 , T̂ �2

]]
. (17)

By (13), we see that[
T̂ �1 , T̂ �2

] = T̂ �1	�2−�2	�1 . (18)

Then, in order to have a consistent unitary representation of the symmetry transformations,
the Moyal commutator should replace the Poisson bracket. In particular,

δ�xi
a = 1

ih̄

(
xi

a 	 � − � 	 xi
a

)
(19)

which tends to the Poisson bracket in the h̄θ → 0 limit.
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The combination h̄θ = h̄
eB

is the area per particle that results from dividing the total area
of the system by the degeneracy of the Landau levels. The dimensionless combination which
may be used to give a meaning to the h̄θ → 0 limit is the ratio h̄θ/ l2, where l is the typical
scale of variation of the functions that appear in the Moyal bracket. Therefore, if the functions
are smooth on the scale of h̄θ , the Moyal product is approximately the regular one.

The Moyal product is a reflection of the noncommutativity of the spatial coordinates, and
it implies the existence of a minimal volume in the plane. The cyclotron length sets the scale
of the minimal area for this problem.

The transformation rules for the classical xi functions do not correspond to a standard
gauge transformation of the gauge field. Indeed, a time independent gauge transformation
changes the Lagrangian by a total time derivative, and therefore it is equivalent to a
canonical transformation of the coordinates (7). On the other hand, the gauge field variation
corresponding to the transformations (19) is

δ�Aj (x) = ∂j�(x) +
1

ih̄
(Aj (x) 	 �(x) − �(x) 	 Aj (x)) (20)

namely, they are U(1) noncommutative gauge transformations. These are the gauge
transformations we were looking for, and the gauge field action must, therefore, be constructed
using this symmetry as a criterion. It is worth remarking that this result agrees with the
somewhat different (but obviously related) approach of [3], if the full noncommutative version
of the latter is used.

The previous discussion on the noncommutativity of the coordinates is independent of
the gauge choice for Aj . Indeed, had we used a gauge field in a general gauge (subject only
to the condition ∂1A2 − ∂2A1 = B) in the action Sint:

Sint = e

N∑
a=1

∫
dt Ak( �xa(t))

dxk
a(t)

dt
(21)

the canonical Poisson brackets would have been:{
xk

a , eAk(xb)
} = δab (22)

(no sum over k). Then, the use of the standard properties of the Poisson bracket:{
xk

a , eAk(xb)
} = e

{
xk

a , x
j

b

}
∂jAk(xb)

= e

2

{
xk

a , x
j

b

}
(∂jAk(xb) − ∂kAj (xb)) = − 1

2θ
εjk

{
xk

a , x
j

b

}
(23)

allows us to derive the same bracket as for the symmetric gauge choice, namely,{
xj

a , xk
b

} = θδabε
jk. (24)

2.2. LLL projection and noncommutative description

Let us now turn to the construction of the Hilbert space for the one-particle first quantized
system, a step which is required even in implementing the second quantization.

The theory has, in Dirac’s terminology, two primary second-class constraints χ1, χ2:

χ1 = π1 − eA1(x) ≈ 0 χ2 = π2 − eA2(x) ≈ 0 (25)

where πj = −i∂j . There are many different ways to construct the quantum theory for
this system, depending on the method of implementing these constraints. We have found it
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convenient to use an approach which follows closely the physical situation corresponding to
a nonrelativistic particle of mass m in the presence of an external magnetic field, when that
magnetic field becomes very large. One begins with the observation that h, the Hamiltonian
for a single particle of mass m in a constant magnetic field B, may be written as

h = 1

2m
[(π1 − eA1)

2 + (π2 − eA2)
2] = 1

2m

(
χ2

1 + χ2
2

)
. (26)

The constraints χ1 and χ2 are equivalent to the two complex combinations: χ = (χ1 −
iχ2)/

√
2, χ∗ = (χ1 + iχ2)/

√
2, which in the quantum theory become a pair of mutually

adjoint operators:

χ̂ = (χ̂1 − iχ̂2)√
2

χ̂ † = (χ̂1 + iχ̂2)√
2

(27)

verifying the commutation relation:

[χ̂ , χ̂ †] = h̄

θ
(28)

which is independent of the gauge choice adopted for Aj . These two second-class constraints
may also be thought of as a pair composed of a first-class constraint (χ̂ , say) plus its gauge fixing
(χ̂ †). This allows us to treat the constraints differently, by using an alternative interpretation.
For example, one may just use Dirac’s method for first-class constraints, and demand the
physical subspace Hphys of the full Hilbert space H (i.e., the one constructed out of the
unconstrained system) to be annihilated by the first-class constraint

χ̂ |ψ〉 = 0 ∀|ψ〉 ∈ Hphys. (29)

Thus, the definition of the physical Hilbert space can be conveniently defined as a
‘reduction’ from the one corresponding to the usual Hamiltonian for a particle in an external
magnetic field. This treatment of the constraints is, of course, the most convenient when one
considers a physical situation described by the Hamiltonian ĥ, since not only does it describe
the physical Hilbert space (as a ‘vacuum’), but also allows for the consideration of the possible
corrections due to the fact that the reduction is a simplification of the real physical situation.
Indeed, while the constrained manifold is defined by (29), corrections due to the kinetic term
will be contained in higher states, built upon the ‘vacuum’ Hphys.

To make this more explicit, one introduces the operators

â =
√

θ

h̄
χ̂ â† =

√
θ

h̄
χ̂ † (30)

which verify the standard creation and annihilation algebra,

[â, â†] = 1 (31)

while the Hamiltonian h becomes

ĥ = h̄ωc

(
â†â + 1

2

)
(32)

where ωc = − eB
m

= 1
mθ

is the cyclotron frequency. The lowest Landau level of the Hamiltonian
ĥ is, of course, annihilated by â, and the higher states can be generated by repeated application
of â†: |n〉 = (â†)n√

n!
|0〉. All these states are, however, degenerate. To treat this degeneracy one

introduces the operators x̂1
0, x̂

2
0, which classically correspond to the motion of the centre of the

trajectory and are usually called guiding centre coordinates. They are defined by

x̂1
0 = x̂1 − θχ̂2 x̂2

0 = x̂2 + θχ̂1 (33)

and verify the commutation relations[
x̂1

0, x̂
2
0

] = ih̄θ (34)
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rather than the usual commutativity, which holds between x̂1 and x̂2:

[x̂1, x̂2] = 0. (35)

Besides, both x̂1
0 and x̂2

0 commute with â and â†.
The physical Hilbert space corresponds to the lowest Landau level of the Hamiltonian ĥ.

Let us now consider how to define physical operators, also in the Dirac approach. Being a
first-class system, physical operators have to commute with the first-class constraints. What
is needed is a procedure to assign a gauge invariant operator to any classical function of the
coordinates. We begin by introducing a correspondence between functions and operators
which is valid before reducing to the physical subspace, and then make the necessary changes.
If f (x) is represented in terms of its Fourier transform in momentum space, f̃ (p):

Ô(f ) =
∫

dp1 dp2

2πh̄
f̃ (p) exp

[ i

h̄
(p1x̂

1 + p2x̂
2)

]
(36)

then the product between classical functions is commutative, since (35) implies that there are
no ordering problems in the definition of Ô(f ). The noncommutativity arises when writing
x̂i in terms of x̂i

0, so that (36) becomes

Ô(f ) =
∫

dp1 dp2

2πh̄
f̃ (p) exp

[ i

h̄

(
p1x̂

1
0 + p2x̂

2
0

)]
exp[αâ† − α∗â] (37)

where â and â† are the operators defined in (30), and

α(p) = p1 − ip2√
2mh̄ωc

α∗(p) = p1 + ip2√
2mh̄ωc

. (38)

In general, a function f so defined will not be gauge invariant, due to the presence of the
unitary operator D̂(α, α∗)

D̂(α, α∗) = eαâ†−α∗â (39)

which produces shifts in α when acting on a coherent state characterized by a complex
number λ:

D̂(α, α∗)|λ〉 = |λ + α〉 â|λ〉 = λ|λ〉. (40)

On the other hand, D̂(β, β∗) is, indeed, the unitary operator that realizes the gauge
transformations generated by the first-class constraint, so that we may project D̂(α, α∗) into
its gauge invariant part by taking the average with respect to the gauge group:

D̂0(α, α∗) = 1

π2

∫
dβ dβ∗D̂

†
(β, β∗)D̂(α, α∗)D̂(β, β∗). (41)

It is simple to check that

D̂
†
(β, β∗)D̂(α, α∗)D̂(β, β∗) = D̂(α, α∗) exp[2i Im(αβ∗)] (42)

and this implies, after integrating over β and β∗, that

D̂0 = 1 (43)

where 1 denotes the identity operator. Thus, we see that the physical operator corresponding
to f is

Ô0(f ) =
∫

dp1 dp2

2πh̄
f̃ (p) exp

[ i

h̄

(
p1x̂

1
0 + p2x̂

2
0

)]
(44)

which, in view of the noncommutativity between the x
j

0 , induces a Moyal product for the
classical functions. It is important to realize that this reduction has been presented here
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entirely in terms of the constrained system, and not in the context of an approximation to the real
situation where there are more levels than just the vacuum. Had we wanted to keep the full
Hilbert space, the projection would have to be understood as an operation that changes the
number of physical degrees of freedom. Still, the reduced operator could now be defined by
taking the vacuum expectation value of (37) on the lowest Landau level. This is a partial
average, affecting only the annihilation and creation operators that go from one Landau level
to the next, leaving a dependence on the operators that take care of the degeneracy. With
this reduction in the number of degrees of freedom, the operator Ô(f ) becomes Ôr (f ),
defined by

Ôr (f ) = N
∫

dp1 dp2

2πh̄
f̃ (p) exp

[ i

h̄

(
p1x̂

1
0 + p2x̂

2
0

)]
exp

(
−1

2
|α(p)|2

)
(45)

where N denotes a normalization constant, defined as

N−1 =
∫

dp1 dp2

2πh̄
exp

(
−1

2
|α|2

)
(46)

and introduced for reasons that will become clear later. Then the correspondence between
functions and operators should be defined by

f (x) → Ôr (f ) =
∫

dp1 dp2

2πh̄
f̃ r (p) exp

[ i

h̄

(
p1x̂

1
0 + p2x̂

2
0

)]
(47)

where

f̃ r (p) = N f̃ (p) exp
(− 1

2 |α(p)|2) (48)

is a ‘smoothed’ version of f . Indeed, in coordinate space, fr corresponds to f convoluted
with a Gaussian window of size equal to the cyclotron length for each coordinate. Of course,
the Moyal product will now appear for the functions fr , and not for the original ones, f . This
is to be expected, since the model with all the Landau levels as physical states is commutative,
and some modifications are to be expected when comparing with the purely noncommutative
model. The normalization N is included in order to preserve the probability, when the
reduction in the number of degrees of freedom is implemented.

Summarizing, we have shown that the proper treatment of the constrained system naturally
leads to the consideration, at the classical level, of a noncommutative theory. It should be noted
that the original, commuting coordinates are mapped onto the guiding centre coordinates.

Everything we have discussed here has an analogue formulation in the path integral
quantization scheme. In particular, the Weyl ordering may be implemented by the ‘mid-point
prescription’. The emergence of a noncommutative theory may also be shown to happen
in the path-integral setting, as shown for point-splitting regularization in string theory [16].
This holds true also for the general case of quantization deformation of a Poisson structure
[17]. We apply this to the case at hand in appendix A, using the ‘magnetic’ language, and
particularizing to the system of interest.

3. Effective description for large magnetic fields

In the previous section we have shown that, when the uniform magnetic field is strong enough
to constrain the dynamics of the two-dimensional electron system to the lowest Landau level,
the noncommutative description is the only one consistent with the symmetries of the problem.
However, it is unpleasant to realize that, in fact, as soon as we assume that the gap between the
lowest Landau level and the upper ones is finite, the coordinates commute. This discontinuous
behaviour would seem to forbid any attempt to use the noncommutative approach as a good
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starting point to deal with the case of a finite gap. The main reason for this discontinuous
behaviour is, of course, that the number of physical degrees of freedom is different for the
finite and infinite gap cases. In this sense the phenomenon is analogous to the CS quantum
mechanics model of [13].

We could attempt, however, an intermediate approach: the noncommutative theory could
be introduced with a θ parameter corresponding to a strong magnetic field (not necessarily
equal to the total external one), but with the noncommutative theory still containing a
(noncommutative) external magnetic field.

Indeed, for the single particle action in an external field, the coupling to the magnetic field
is given by

Sint = e

∫
dt Ak( �x(t))

dxk(t)

dt
. (49)

We may now assume that Ak corresponds to a magnetic field B, which can always be
represented as

B = Bθ + B (50)

where, for some reason that depends on the physical problem one is dealing with, Bθ is such
that it is convenient to use the noncommutative description, and B = B − Bθ . Thus the idea
is to go from the commutative description, where there is a constant magnetic field B, to a
noncommutative one with a noncommutative parameter

θ = − 1

eBθ
(51)

and with a constant noncommutative magnetic field B̂, related to B, as we shall see.
Accordingly, the splitting of the gauge field A (which verifies �∇ × �A = B), results: A =
Aθ + A, such that �∇ × �Aθ = Bθ and �∇ × �A = B.

The introduction of the noncommutative description in this context can be justified as
follows. We can try to decouple the matter fields from the uniform magnetic feld Bθ by
performing a singular gauge transformation. In principle we can write

ψ(t, x) = Gc(x)ψc(t, x) ψ †(t, x) = ψ †
c (t, x)G†

c(x) (52)

where

Gc(x) = exp
ie

h̄

∫
C(x)

d�y · �Aθ(y) (53)

with C(x) denoting a curve that starts at spatial infinity and ends at the point �x. In this way
the new fields are free, but at the cost of being dependent on the curve C. However, one can
get rid of this dependence on the curve if, for any path �, the condition

e

h̄

∫
�

d �y · �Aθ(y) = eBθ

h̄
S(�) = 2πn (54)

with n ∈ Z is satisfied. In this expression, S(�) denotes the area enclosed by the curve �.
Thus, the gauge transformation that eliminates Bθ would be independent of the path only if
the area enclosed by an arbitrary path � was quantized, i.e., if S(�) = h̄θ2πn. However, the
quantization of the area is difficult to justify, unless we work in the context of noncommutative
geometry, where there is an uncertainty relation for the two spatial coordinates. In the Landau
problem the natural scale for the ‘quantum’ of area is set by the cyclotron length lθ = √

h̄θ ,
which precisely defines the noncommutative parameter when the dynamics is restricted to the
lowest Landau level. Therefore, within this context, it would be justified to get rid of Aθ

using the gauge transformation of equation (53), as long as we introduce at the same time the
noncommutativity of the coordinates with a noncommutative parameter θ .
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Using equation (50) the action describing the interaction becomes

Sint = e

∫
dt Ak( �x(t))

dxk(t)

dt
= Sθ + S (55)

where

Sθ = e

∫
dt Aθ

k( �x(t))
dxk(t)

dt
(56)

and

S = e

∫
dt Ak( �x(t))

dxk(t)

dt
. (57)

Then, the part of the action corresponding to Aθ is used to introduce the noncommutativity,
while the part proportional to A is treated as an external field for the remaining theory.
However, in the noncommutative theory, this remaining field is not precisely equal to A: when
we consider gauge transformations for A, with Aθ fixed, the classical action is invariant, since
these transformations change the Lagrangian by a total derivative. However, the quantum
theory will not have this symmetry, for the same reason that made the action (4) invariant
under (20) rather than under the usual commutative Abelian gauge transformations. Being a
noncommutative gauge field, we should write Â rather than A for the remaining gauge field
in the noncommutative theory, so that the action (55) taking into account quantum effects is
now written as

Ŝ int = e

∫
dt Âk( �x(t))

dxk(t)

dt
. (58)

These quantum effects may be introduced by using Sθ = e
∫

dt Aθ
k

dxk

dt
as the ‘free’ action,

which then defines the canonical structure and its associated Weyl ordering.
A possible way to accomplish this can be to use the path integral framework to derive the

action Ŝ = Ŝ int + Ŝm as the ‘effective’ action that results from a (partial) integration of the
degrees of freedom, namely,

e
i
h̄
Ŝ[Â] = 〈

e
i
h̄
(S+Sm)

〉θ
(59)

where

〈· · ·〉θ =
∫

Dx · · · e
i
h̄
Sθ

(60)

with the path integral evaluated in a semiclassical expansion, defined in the same way as
in appendix A. The resulting Ŝ action is, of course, noncommutative, since when expanding
S + Sm in (59), each product is replaced by its Moyal analogue. We also note that a perturbative
field a (not necessarily corresponding to a magnetic field but for instance to an external probe)
will be transformed into a noncommutative one by this method. It is clear from the above
discussion that the kinetic energy of the two-dimensional fermions has not been quenched
since it is present in Sm. It has become the kinetic energy of the noncommutative action.

Of course, this procedure is not exact, since, had we used the full gauge field as the free
action, the canonical theory would have been different. Besides, there would be no remnant
field for this different noncommutative theory, since in this case, we would have traded all
the magnetic field B with Bθ . There is then an interplay between the θ parameter and the
strength of the remaining noncommutative field, which of course corresponds to a constant
noncommutative field strength Fij .

To see this, we realize that gauge orbits of the noncommutative U(1) theory will
correspond to the usual U(1) gauge orbits of the classical theory, so that

δ̂λ̂Â = δ̂λA (61)
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which is the expression that leads to the Seiberg–Witten mapping between commutative and
noncommutative theories [16]. Thus, if all the uniform magnetic field B is not traded with Bθ

in the noncommutative description, there is an extra constant noncommutative magnetic field.
To find a quantitative expression for this interplay, we may recall that a constant commutative
magnetic field is mapped, via the Seiberg–Witten equations, to a noncommutative constant
field B̂, with the relation

1

eB
= 1

eB̂
− θ (62)

which is an exact solution of the SW relations, valid for the case of a constant magnetic
field [16].

Equation (62) shows that if θ vanishes, the noncommutative description reduces to the
usual commutative theory in a continuous way. On the other hand, if all the magnetic field B
is traded with Bθ , there is no remaining magnetic field in the noncommutative theory. In this
case, the limit of vanishing θ no longer reduces to the original commutative theory. This is,
of course, consistent with the fact that for the Landau problem, the projection onto the LLL is
not a continuous process since it implies a change in the Hilbert space of the system.

Based on the previously derived relations between the strong magnetic field Hamiltonian
and a noncommutative theory, it should be noted that the classical action (to be used in second
quantization) should contain the Moyal product whenever products of functions of the spatial
coordinates appear. This is, of course, valid also for every other term in the action, including
a pair interaction term. In particular, it can be shown that an ultra-local pair interaction term
in the noncommutative theory, can be mapped onto the Hamiltonian for a free particle in a
uniform magnetic field determined by θ , with an effective mass proportional to the strength
of the pair potential. This term will play the role of an effective kinetic term for the projected
theory.

The standard second quantized action for a bidimensional system of noninteracting
particles in the presence of an external magnetic field (before reducing to the lowest Landau
level) is

Ss =
∫

dt dx1 dx2ψ †(t, x)

[
ih̄∂t − ea0 + µ − 1

2m
(−ih̄ �∇ − e �Aθ − e �A − e�a)2

]
ψ(t, x) (63)

where �Aθ and �A were defined above, and aµ corresponds to an external probe.
According to our previous discussion, the noncommutative description with Bθ

determining the noncommutativity can be introduced, as a reduction to the first Landau level
for Bθ , passing from the action (63) to the noncommutative one

Snc =
∫

dt dx1 dx2

[
ψ †(t, x) 	 (ih̄∂t + µ)ψ(t, x) − eψ †(t, x) 	 a0(t, x) 	 ψ(t, x)

− 1

2m
ψ †(t, x) 	 (−ih̄ �∇ − e( �A + �a)) 	 (−ih̄ �∇ − e( �A + �a))

]
	 ψ(t, x) (64)

where the Bθ field part has disappeared from the action (i.e., it is in 	), since it has been traded
for the noncommutativity of the coordinates:

θ = − 1

eBθ

. (65)

For a system of nonrelativistic fermions in the presence of a commutative gauge field
with a part that corresponds to a uniform magnetic field B and a fluctuation aµ, the fermionic
determinant can be calculated [18] when the ratio between the average density and the magnetic
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field is such that there is an integer number of Landau levels filled. In this case, the leading
order term of the effective action for aµ has the Chern–Simons form, and its coupling constant
is proportional to the ratio between the magnetic field and the average density (or the inverse of
the filling fraction). According to our previous discussion, we can apply the Seiberg–Witten
transformation to this gauge field, with a θ parameter defined by Bθ , so that the constant
magnetic field B is transformed into B̂, through relation (62). Then the commutative CS
action is transformed into the noncommutative one [19] for the field âµ which is also related to
aµ through the Seiberg–Witten relation. We know that for vanishing θ the CS action becomes
the commutative one with a coupling constant proportional to the inverse of the filling fraction.
On the other hand, if all the uniform magnetic field is traded with Bθ , there is no induced
Chern–Simons action. For an arbitrary θ , the leading order term in a derivative expansion
of the fermionic determinant will be given by a NCCS action for the external probe whose
coupling constant will be a function of θ and B̂.

To conclude this section we discus briefly a possible realization of this approach in the
context of the QHE problem. It is well known that in the presence of a strong perpendicular
magnetic field, a system of oppositely charged particles (such as a neutral dipole) moves in a
straight line perpendicular to the vector connecting them, even though its size grows with its
momentum [20]. Such dipoles are the objects described by noncommutative field theories. In
particular, it has been shown that a set of local gauge invariant operators in noncommutative
gauge theories can be constructed by using straight Wilson lines with momentum pµ such
that the distance between the end points of the line is lν = pµθµν [21, 22]. Given a local
operator O(x) in an ordinary gauge theory (in the adjoint representation), its noncommutative
generalization is [21]

Õ(k) = T r

∫
d3xO(x) ∗ P∗ exp

(
iq

∫
C

dλµAµ(x + λ)

)
∗ eikx (66)

where C is a straight path λµ(σ ) = kµθµνσ, 0 � σ < 1, and P∗ denotes path ordering with
respect to the star product. The tilde is used as a reminder that there is a Wilson line attached
to the operator. The Wilson line is extended in a direction perpendicular to the momentum.
For small k or θ the length of the Wilson line goes to zero and Õ reduces to the corresponding
operator in the commutative field theory.

In the context of the FQHE, it was argued in [23] that for the half-filled state, the true
low-energy quasiparticles in the fermion Chern–Simons theory obtained upon screening of the
magnetoplasmon mode are electrically neutral (see also [23–27]). Based on trial wavefunctions
in the LLL, Read noted that the electron and the correlation hole are separated from one another
by a distance proportional and perpendicular to the canonical momentum �k of these low-energy
excitations. Therefore, these neutral quasiparticles carry an electric dipole moment el2ẑ × �k
with l being the magnetic length. This suggests that, if we choose the deformation parameter
θ such that all the external magnetic field is traded by Bθ (i.e. Bθ = B), the effective theory
of equation (64) (including a pair potential term, not written explicitly in that expression)
could be an appropriate description of this problem, since it naturally describes the elementary
quasiparticles of the half-filled state. In particular, in a similar model studied in [28], the
authors show that the corresponding ground state wavefunction has the shifting between the
particle and the correlation hole discussed by Read [23].

4. Conclusions

In this work we have studied different aspects of the description of two-dimensional systems
in high magnetic fields using noncommutative theories. We began by reviewing the problem
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of a particle coupled to a magnetic field whose magnitude is large enough to neglect the
kinetic energy. In this case, the spatial coordinates are canonical conjugate to each other,
and the system is invariant under area preserving diffeomorphisms of the plane. Thus, at
the quantum level the Moyal bracket should replace the Poisson bracket for infinitesimal
coordinate transformations. Alternatively, one may think in terms of gauge transformations
for the gauge field coupled to the particle. In this case, the usual gauge transformations
are replaced by their noncommutative version. Therefore, the gauge field action must be
constructed, being invariant under this noncommutative gauge symmetries. In [29, 30] it was
argued using general hydrodynamical arguments that the effective action for an incompressible
state of a system of charged particles in two dimensions in the presence of a strong magnetic
field must be a Chern–Simons action. Analogously, since the correct symmetry for the gauge
fields in the LLL is the noncommutative gauge symmetry, this suggests that the natural
effective description for the theory projected to the lowest Landau level should be given by
the noncommutative Chern–Simons action.

As we have already mentioned, the Hilbert space is not the same if all the Landau
levels are taken into account, than if only the LLL can be occupied. In particular, the
space coordinates commute in the first case, and they do not commute in the latter case,
and the number of degrees of freedom is different. In this sense the projection onto the
LLL cannot be made in a continuous way. We have argued that if the only allowed state
is the LLL, the correct description is a noncommutative free theory. Therefore the obvious
question is how to make compatible the noncommutative description with a problem in which
some Landau level mixing is present. We argued that in this case a someway intermediate
approach should be used. The noncommutative theory could be introduced with a θ parameter
corresponding to a magnetic field Bθ (not necessarily equal to the external one), but with
the noncommutative theory still containing a (noncommutative) uniform magnetic field B̂,
in such a way that B̂ is related to B through the Seiberg–Witten relation, and the external
uniform magnetic field is B = Bθ + B̂. Then we argued that once the fermionic determinant
is calculated for this theory, the leading order term in a derivative expansion will be given
by a NCCS action for the external probe whose coupling constant will be a function of θ

and B̂.
To conclude, we mention that noncommutative field theories have an unusual perturbative

behaviour. This is due to the fact that the Moyal product generates phases appearing in
the perturbative structure that induce an interplay between the infrared and the ultraviolet
regimes. It can be argued that since spatial noncommutativity is a short-distance property,
it would be surprising that some effects related to it could show up in the low-energy
effective theory. However, it was shown that for some noncommutative field theories
[31–33] the noncommutativity of the coordinates modifies the critical behaviour of the
theory, since the long-distance behaviour is entangled with the short-distance one due to
the presence of the Moyal phases. This interplay between short- and long-distance behaviour
therefore changes the critical properties of the noncommutative theories compared to their
commutative counterparts. In this context, we believe it might prove useful to explore the
alternative noncommutative descriptions of bidimensional systems in high magnetic fields
described in this work, to approach problems whose commutative counterparts fail.
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Appendix A. Path integral representation of the Moyal product

The Moyal product of two functions of the coordinates f, g may be represented, following
[17], in terms of a quantum mechanical path integral with a topological action. This action
becomes particularly simple when one considers the deformation quantization of a Poisson
structure defined by a symplectic form, and this is, indeed, the case at hand.

For this simple case, the expression for the Moyal product may be written as

(f 	 g)(x) =
∫

γ (±∞)=x

Dγf (γ (1))g(γ (0)) e
i
h̄
S[γ ] (A1)

where γ : R → R
2 denotes a plane curve, and the action S[γ ] is defined by

S[γ ] = b

2

∫ +∞

−∞
dt γ̇ j (t)εjkγ

k(t) (A2)

with b = −θ−1. It is also adopted as a prescription that the functional integral should be
evaluated semiclassically, around the ‘classical’ configuration γ j (t) = xj = constant. This
path integral formula can also be thought of as a concrete realization of Kontsevich’s result on
the expression of the star product in a Feynman-like perturbation expansion [34].

In the case at hand, the above definition may be applied to two functions f and g more
directly if they are written in terms of their Fourier transforms:

f (x) =
∫

d2k

(2π)2
f̃ (k) ei�k· �x g(x) =

∫
d2k

(2π)2
g̃(k) ei�k· �x (A3)

so that (A1) becomes∫
γ (±∞)=x

Dγf (γ (1))g(γ (0)) e
i
h̄
S[γ ] =

∫
d2k

(2π)2

d2l

(2π)2
f̃ (k)g̃(l)

×
∫

γ (±∞)=x

Dγ exp

{
i

h̄
S[γ ] + i

∫ +∞

−∞
dt γ j (t)[kj δ(t − 1) + lj δ(t)]

}
(A4)

where the plane wave parts of the Fourier transforms have been included in the source term
of γ j (t). We then make a shift in the integration variables: γ j (t) → xj + ξ j (t), so that the
measure is now Dξ , and ξ vanishes at ±∞:∫

γ (±∞)=x

Dγf (γ (1))g(γ (0)) e
i
h̄
S[γ ] =

∫
d2k

(2π)2

d2l

(2π)2
f̃ (k)g̃(l) ei(�k· �x+�l· �x)

×
∫

ξ(±∞)=0
Dξ exp

{
i

h̄
S[ξ ] + i

∫ +∞

−∞
dt ξ j (t)[kj δ(t − 1) + lj δ(t)]

}
. (A5)

Thus the integral over ξ is a Gaussian and we may write its result explicitly:∫
ξ(±∞)=0

Dξ exp

{
i

h̄
S[ξ ] + i

∫ +∞

−∞
dt ξ j (t)[kj δ(t − 1) + lj δ(t)]

}
= exp

{
− ih̄

2b

∫
dt1

∫
dt2[kiδ(t1 − 1)

+ liδ(t1)]Kij (t1 − t2)[k
j δ(t2 − 1) + lj δ(t2)]

}
(A6)

where Kij (t) is the inverse of the operator defining the quadratic form in the action, namely,

−εij d

dt
Kjk(t) = δ(t)δi

j (A7)
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which has the solution

Kij (t) = 1
2εij sign(t). (A8)

This propagator is uniquely defined, since it has to be Bose symmetric: Kij (t) = Kji(−t),
and moreover it is also consistent with the canonical commutator of equation (8). The last
condition may be verified by a direct application of the BJL limit [35] to derive the equal time
commutator between γ j and γ k:

[γ j (t), γ k(t)] = ( lim
ε→0+

− lim
ε→0−

)〈γ j (t + ε)γ k(t)〉 (A9)

where 〈γ j (t1)γ
k(t2)〉 is the propagator derived from (A1). This is, of course, proportional to

the inverse of Kij :

〈γ j (t1)γ
k(t2)〉 = i

h̄

2b
εjk sign(t1 − t2) (A10)

and when inserted in (A9) reproduces the commutator we had obtained by canonical means
in (8) for the coordinates of the particles in an external field.

Using now the explicit form for K in (A6), we find∫
ξ(±∞)=0

Dξ exp

{
i

h̄
S[ξ ] + i

∫ +∞

−∞
dt ξ j (t)[kj δ(t − 1) + lj δ(t)]

}
= e− ih̄

2b
εij k

i lj (A11)

which inserted in (A5) yields∫
γ (±∞)=x

Dγf (γ (1))g(γ (0)) e
i
h̄
S[γ ] =

[
exp

(
ih̄θ

2

∂

∂xj

∂

∂yk

)
f (x)g(y)

]
y→x

(A12)

where the last expression is, of course, one of the possible ways of defining the Moyal product
(f 	 g)(x), with a parameter θ = −b−1.

Appendix B. Fluid representation

We discuss here some aspects of a somewhat different approach to the introduction of a
noncommutative CS theory, in terms of a fluid representation. Although this is not the path to
the NCCS theory that we have followed in the main part of this paper, we have nevertheless
included it here, for the sake of completeness. Besides, we consider here a different version
of the approach developed in [3], which is applicable to the more general case of bosonized
theories in 2 + 1 dimensions, supplemented by an incompressibility constraint. Our starting
point is the expression for the bosonized action SB[A], which in the leading approximation in
a derivative expansion is given by

SB[A] = SCS[A] (B1)

where SCS denotes the CS action:

SCS[A] = κ

2

∫
d3x εµνλAµ∂νAλ. (B2)

This gauge field is related to the vacuum expectation value (VEV) of the bosonized matter
current by

〈Jµ(x)〉 = jµ(x) = εµνλ∂νAλ(x). (B3)

In the A0 = 0 gauge, the spatial components of the current are

jk(t, �x) = −εkl ∂

∂t
Al(t, �x). (B4)

To go to the fluid interpretation, one regards the spatial current as a density ρ times the fluid
velocity �v. From this expression, we may formally write the equation that determines the fluid
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flux lines:
∂xk

∂t
= − 1

ρ
εkl ∂Al

∂t
(B5)

and its solution shall be of the form

xk = xk(t, �y) (B6)

where �y denotes the initial conditions for a given line. Namely, a given value of �y determines
one line from its initial point at t = t0. Note that, in principle, both ρ and A may be functions
of the space and time coordinates. In order to proceed from equation (B5), we need to make
further use of the continuity equation, and introduce the area preserving diffeomorphism
symmetry assumption. A convenient way to do this is by defining a 2-form � by

� = ρ(dx1 − v1 dt) ∧ (dx2 − v2 dt) (B7)

which, by some elementary algebraic steps, can be shown to verify

d� =
[

∂

∂t
ρ + �∇ · �j

]
dt ∧ dx1 ∧ dx2 = 0 (B8)

as a consequence of the continuity equation (an assumption of the bosonization approach).
When writing � in terms of the formal solutions (B6), one makes use of dxi = ∂xi

∂t
dt + ∂xi

∂yj dyj

and vi = ∂xi

∂t
to obtain

� = ρ
∂(x1, x2)

∂(y1, y2)
dy1 ∧ dy2. (B9)

Equation (B8) holds for any choice of coordinates, and in this set implies

∂

∂t

[
ρ

∂(x1, x2)

∂(y1, y2)

]
= 0. (B10)

We now impose the area preservation requirement on the system, namely,

∂(x1, x2)

∂(y1, y2)
= 1 (B11)

so that ρ = ρ0. Choosing the �y coordinates in order to have a constant ρ0, we have a uniform
and constant density. With this in mind, (B5) can be integrated, yielding

xk(t, �y) = yk − 1

ρ0
εklAl(t, �y) (B12)

which is, indeed, the relation introduced in [3]. Up to now, we have used just the bosonization
rule that yields the VEV of the current in terms of the curl of the gauge field Aµ, without
actually using the explicit form of the bosonized action. It turns out that the invariance under
area preserving diffeomorphisms is not compatible with the standard Chern–Simons action.
This may be seen from relation (B12), which, when applied to the area element, yields

dx1 ∧ dx2 =
[

1 − 1

ρ0
B
]

dy1 ∧ dy2 = dy1 ∧ dy2 (B13)

where

B = ∂1A2 − ∂2A1 − 1

ρ0
{A1, A2} (B14)

with {A,B} = εjk∂jA∂kB. Thus, one must impose the constraint B = 0. As discussed in [3],
this constraint, together with the ‘kinetic’ term for the fluid, may be written in a way which is
tantamount to the first nontrivial approximation to the noncommutative Chern–Simons action.
Thus we may certainly conclude that the bosonization mapping between the current and the
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gauge field naturally leads to a fluid interpretation, and that this fluid may be described by a
non-linear Chern–Simons-like action which is an approximation to the full noncommutative
theory. However, it is easy to see that, even in the context of this approximate bosonization,
the noncommutativity is bound to arise when including quantum effects. Indeed, one way
to see this is the fact that the fluid coordinates xi will be correlated by quantum (loop)
effects. Since the coordinates are proportional to the components of A, the existence of a
nontrivial correlation between the two different components of A in the quantum theory will
be translated into a nontrivial correlation for the corresponding coordinates. By the BJL limit,
this correlation implies the noncommutativity of the coordinates in the quantum version of the
theory, and hence the noncommutativity of the CS action. The correlation of A, on the other
hand, is due to the fermion loop, and in this approximation is given by the (commutative)
Chern–Simons action.
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